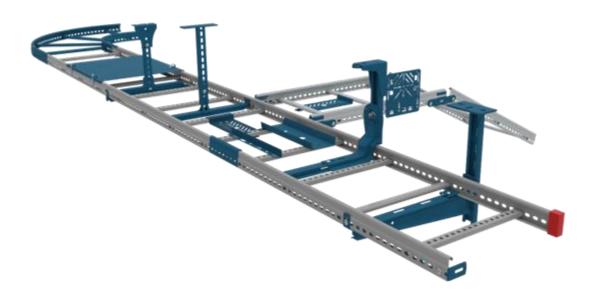
# Environmental **Product Declaration**



**EPD**<sup>®</sup>


In accordance with ISO 14025:2006 and EN 15804:2012+A2:2019/AC:2021 for:

# Hot-dipped pre-galvanized cable ladders (Z4)

from

# MP bolagen Industri AB

| Programme:               | The International EPD <sup>®</sup> System, www.environdec.com                                                                                                                                      |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Programme operator:      | EPD International AB                                                                                                                                                                               |
| EPD registration number: | EPD-IES-0010314                                                                                                                                                                                    |
| Publication date:        | 2024-06-28                                                                                                                                                                                         |
| Valid until:             | 2029-06-28                                                                                                                                                                                         |
|                          | An EPD should provide current information and may be updated if conditions change. The stated<br>validity is therefore subject to the continued registration and publication at www.environdec.com |







# **General information**

### Programme information

| Programme: | The International EPD <sup>®</sup> System                           |
|------------|---------------------------------------------------------------------|
| Address:   | EPD International AB<br>Box 210 60<br>SE-100 31 Stockholm<br>Sweden |
| Website:   | www.environdec.com                                                  |
| E-mail:    | info@environdec.com                                                 |

#### Accountabilities for PCR, LCA and independent, third-party verification

#### Product Category Rules (PCR)

CEN standard EN 15804 serves as the Core Product Category Rules (PCR)

Product Category Rules (PCR): PCR 2019:14 Construction products (EN 15804:A2), version 1.3.3.

PCR review was conducted by: The Technical Committee of the International EPD® System. Review chair: Claudia A. Peña, University of Concepción, Chile. A full list of members available on www.environdec.com. The review panel may be contacted via info@environdec.com.

#### Life Cycle Assessment (LCA)

LCA accountability: Thomas Eknor Morrell, Katarzyna Dziubanii, Niclas Silfverstrand, Ramboll Sweden AB.

#### Third-party verification

Independent third-party verification of the declaration and data, according to ISO 14025:2006, via:

EPD verification by individual verifier

Third-party verifier: Håkan Stripple, IVL Swedish Environmental Research Institute P.O. Box 53021, SE-400 14 Gothenburg, Sweden Hakan.Stripple@IVL.se, www.IVL.se

Approved by: The International EPD<sup>®</sup> System

Procedure for follow-up of data during EPD validity involves third party verifier:

 $\Box$  Yes  $\boxtimes$  No

The EPD owner has the sole ownership, liability, and responsibility for the EPD.

EPDs within the same product category but registered in different EPD programmes, or not compliant with EN 15804, may not be comparable. For two EPDs to be comparable, they must be based on the same PCR (including the same version number) or be based on fully-aligned PCRs or versions of PCRs; cover products with identical functions, technical performances and use (e.g. identical declared/functional units); have equivalent system boundaries and descriptions of data; apply equivalent data quality requirements, methods of data collection, and allocation methods; apply identical cut-off rules and impact assessment methods (including the same version of characterisation factors); have equivalent content declarations; and be valid at the time of comparison. For further information about comparability, see EN 15804 and ISO 14025.





## **Company information**

Owner of the EPD: MP bolagen Industri AB

Contact:

Markus Wanke, markus.wanke@mpbolagen.se

#### Description of the organisation:

MP bolagen Industri AB develop, manufacture and market a wide range of products for cable management systems for the electrical industry. The production takes place in Ekenässjön outside Vetlanda, Sweden. MP bolagen's goal is to be one of the electricity industry's best suppliers when it comes to quality, delivery, reliability, and customer service. The company is certified according to ISO standard, ISO 9001 and 14001.

<u>Product-related or management system-related certifications:</u> MP bolagen is certified according to ISO 9001 and 14001.

<u>Name and location of production site(s):</u> Name: Ekenässjön Location: Barkvägen 7, 574 91 Ekenässjön, Sweden

## **Product information**

<u>Product name:</u> Hot-dipped pre-galvanized cable ladders (Z4)

<u>Product identification:</u> Swedish name: Varmförzinkade kabelstegar (Z4)

#### Product description:

This EPD covers all cable ladders made from hot-dipped pre-galvanized steel. Pre-galvanized steel has been subjected to a process covering sheet steel with a thin layer of zinc-aluminium-magnesium alloy, which gives a bright surface. This zinc layer of 25  $\mu$ m thickness is in accordance with ISO EN 10346, offers protection due to its low electrode potential and slow corrosion rate. Products in pre-galvanized steel are suited for installation in environments with high corrosion rate.

#### Geographical scope:

The study represents the Nordic market, i.e. the Nordic countries: Denmark, Finland, Iceland, Norway and Sweden.

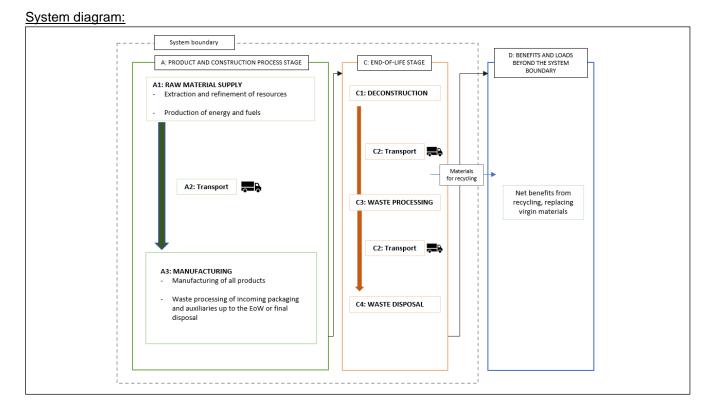




## LCA information

Declared unit: 1 metric tonne of product.

Reference service life: N/A


<u>Time representativeness:</u> Reference year: 2022

Database(s) and LCA software used:

LCA calculations were performed with the LCA software LCA for Experts (version 10.7.0.183), using life cycle inventory (LCI) data from Professional database Version CUP 2023.01 and Ecoinvent 3.8. The EN15804 reference package based on EF 3.1 has been used.

#### Description of system boundaries:

Cradle to gate with modules C1–C4 and module D (A1–A3 + C + D)



The thousand separator and decimal mark in this EPD follow French version of SI style: 1 234,56 (number with six significant figures is shown for illustrative purpose only).



#### Product stage, A1-A3:

The product stage comprises the acquisition of all raw materials, products and energy, transport to the production site, production processes, packaging, and waste processing up to the end-of-waste state or final disposal for non-product wastes.

More specifically, this module includes the upstream processes of extraction and processing of raw materials and the transportation of the input materials to the production site included in the study. Furthermore, it includes the core processes of producing the final product – hot-dipped pre-galvanized cable ladders (Z4), including the impacts from extraction and processing of fuels and auxiliary materials and their transportation to the production site. The module also includes the production of purchased electricity used at the production site.

#### End-of-life, C1-C4:

Hot-dipped pre-galvanized cable ladders (Z4) are sold in the Nordic countries, with Sweden contributing to the largest share. Statistics for Swedish waste management is therefore used as proxy for the Nordic market. 95% of the materials are assumed to go to recycling and the remaining 5% to landfill.

Module C1 comprises the deconstruction of the product. It has been assumed that the deconstruction of the product is a part of the demolition or renovation of a building, which also can include manual work. Therefore, the environmental impacts of the deconstruction process of the product have been viewed as negligible and set equal to zero.

Module C2 includes the transport between the deconstruction site and either recycling facility or landfill. A distance of 100 km has been assumed for both transport to recycling and to a landfill, since no specific information is available.

Module C3 comprises recycling of the materials, within which the processes connected to recycling are included.

Module C4 comprises the disposal of materials, within which the processes connected to landfill are included.

#### Re-use, recovery and recycling potential, D:

Module D includes reuse, recovery and/or recycling potentials, expressed as net impact and benefits. In this case, it is assumed that module D includes the potential benefits from avoided production of steel through recycling of the net (virgin) share of materials in the product lifecycle. Furthermore, 10% losses associated with the remelting of the metal are assumed to occur outside of the system boundaries.





# Additional LCA information

#### Cut-off rules

General cut-off criteria as defined in EN15804 are followed. Life cycle inventory data shall according to EN 15804 include a minimum of 95% of total inflows (mass and energy) per module. No known inflows were left out.

#### <u>Data quality</u>

All processes with a significant impact have high quality datasets.

#### <u>Allocation</u>

The manufacturing process produces pre-consumer scrap as a co-product. Economic allocation is used, which allocates part of the pre-consumer scrap's impact to the product. For the remaining processes, mass allocation has been used.

#### End-of-life Scenario

| End-of-life processes expressed per declared unit |                              |        |  |  |  |  |
|---------------------------------------------------|------------------------------|--------|--|--|--|--|
| Process                                           | Unit                         | Amount |  |  |  |  |
| Assumptions for transportation                    | km to recycling and landfill | 100    |  |  |  |  |
| Recycling process                                 | kg to recycling              | 950    |  |  |  |  |
| Disposal process                                  | kg to landfill               | 50     |  |  |  |  |





# Modules declared, geographical scope, share of specific data (in GWP-GHG results) and data variation (in GWP-GHG results):

|                      | Pro                     | duct st                 | age           | proc      | ruction<br>cess<br>ige    |     |             | U      | se sta      | ge            |                        |                       | En                         | ıd-of-li  | ife sta          | ge       | Resource<br>recovery<br>stage          |
|----------------------|-------------------------|-------------------------|---------------|-----------|---------------------------|-----|-------------|--------|-------------|---------------|------------------------|-----------------------|----------------------------|-----------|------------------|----------|----------------------------------------|
|                      | Raw material supply     | Transport               | Manufacturing | Transport | Construction installation | Use | Maintenance | Repair | Replacement | Refurbishment | Operational energy use | Operational water use | De-construction demolition | Transport | Waste processing | Disposal | Reuse-Recovery-Recycling-<br>potential |
| Module               | A1                      | A2                      | A3            | A4        | A5                        | B1  | B2          | B3     | B4          | B5            | B6                     | B7                    | C1                         | C2        | C3               | C4       | D                                      |
| Modules<br>declared  | Х                       | х                       | х             | ND        | ND                        | ND  | ND          | ND     | ND          | ND            | ND                     | ND                    | х                          | х         | х                | х        | х                                      |
| Geography            | SE,<br>BE,<br>DK,<br>NO | SE,<br>BE,<br>DK,<br>NO | SE            | ND        | ND                        | ND  | ND          | ND     | ND          | ND            | ND                     | ND                    | SI                         | E, DK, I  | NO, FI,          | IS       | SE, DK, NO,<br>FI, IS                  |
| Specific data used   |                         | 5%                      |               | -         | -                         | -   | -           | -      | -           | -             | -                      | -                     | -                          | -         | -                | -        | -                                      |
| Variation – products |                         | 0%                      |               | -         | -                         | -   | -           | -      | -           | -             | -                      | -                     | -                          | -         | -                | -        | -                                      |
| Variation –<br>sites |                         | 0%                      |               | -         | -                         | -   | -           | -      | -           | -             | -                      | -                     | -                          | -         | -                | -        | -                                      |

X = modules declared, ND = Not Declared



# **Content information**

| Product components              | Weight,<br>kg | Post-consumer<br>recycled material,<br>weight-% per DU | Biogenic<br>material, weight-<br>% per DU | Biogenic<br>material, kg C per<br>DU |
|---------------------------------|---------------|--------------------------------------------------------|-------------------------------------------|--------------------------------------|
| Hot-dipped pre-galvanized steel | 1000          | Unknown                                                | 0                                         | 0                                    |
| TOTAL                           | 1000          | Unknown                                                | 0                                         | 0                                    |
| Packaging materials             | Weight,<br>kg | Post-consumer<br>recycled material,<br>weight-% per DU | Biogenic<br>material, weight-<br>% per DU | Biogenic<br>material, kg C per<br>DU |
| TOTAL                           | 0             | 0                                                      | 0                                         | 0                                    |

The products do not contain any of the substances listed on the "Candidate List of Substances of Very High Concern (SVHC) for authorisation"

(http://echa.europa.eu/chem\_data/authorisation\_process/candidate\_list\_table\_en.asp).

## Packaging

Packaging is not included for this product.

## **Recycled material**

#### Provenience of recycled materials (pre-consumer or post-consumer) in the product:

Hot dip galvanized steel used to produce Z4 cable ladders contains an unknown share of post-consumer scrap.



# **Results of the environmental performance indicators**

The estimated impact results are only relative statements, which do not indicate the endpoints of the impact categories, exceeding threshold values, safety margins and/or risks.

Mandatory disclaimer: It is not advised to use the results of modules A1-A3 without considering the results of module C.

| Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ts per 1 met           | ric tonne of ho | ot-dipped p | re-galvaniz | zed cable la | adders (Z4) | )         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------------|-------------|-------------|--------------|-------------|-----------|
| Indicator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Unit                   | A1-A3           | C1          | C2          | C3           | C4          | D         |
| GWP-fossil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | kg CO <sub>2</sub> eq. | 2,68E+03        | 0,00E+00    | 9,47E+00    | 5,41E+01     | 2,58E-01    | -1,03E+03 |
| GWP-biogenic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | kg CO <sub>2</sub> eq. | 1,12E+00        | 0,00E+00    | 2,85E-02    | 7,77E-03     | 1,29E-04    | -4,54E+00 |
| GWP-luluc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | kg CO <sub>2</sub> eq. | 1,51E+00        | 0,00E+00    | 8,91E-02    | 5,41E-03     | 2,43E-04    | -3,06E-01 |
| GWP-total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | kg CO <sub>2</sub> eq. | 2,68E+03        | 0,00E+00    | 9,58E+00    | 5,41E+01     | 2,59E-01    | -1,03E+03 |
| ODP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | kg CFC 11<br>eq.       | 2,12E-07        | 0,00E+00    | 1,25E-12    | 1,17E-05     | 1,07E-07    | -7,95E-09 |
| AP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mol H⁺ eq.             | 6,15E+00        | 0,00E+00    | 5,04E-02    | 5,68E-01     | 2,48E-03    | -2,53E+00 |
| EP-freshwater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | kg P eq.               | 1,95E-03        | 0,00E+00    | 3,52E-05    | 1,69E-03     | 2,41E-05    | -2,17E-03 |
| EP-marine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | kg N eq.               | 1,43E+00        | 0,00E+00    | 2,42E-02    | 2,52E-01     | 8,62E-04    | -6,38E-01 |
| EP-terrestrial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mol N eq.              | 1,52E+01        | 0,00E+00    | 2,69E-01    | 2,76E+00     | 9,42E-03    | -6,84E+00 |
| POCP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | kg NMVOC<br>eq.        | 4,87E+00        | 0,00E+00    | 4,76E-02    | 7,58E-01     | 2,74E-03    | -2,29E+00 |
| ADP-<br>minerals&metals*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | kg Sb eq.              | 1,58E-02        | 0,00E+00    | 6,38E-07    | 2,81E-05     | 6,01E-07    | -9,91E-05 |
| ADP-fossil*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MJ                     | 2,96E+04        | 0,00E+00    | 1,31E+02    | 7,47E+02     | 7,38E+00    | -1,06E+04 |
| WDP*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | m <sup>3</sup>         | 7,64E+02        | 0,00E+00    | 1,16E-01    | 1,84E+00     | 3,39E-01    | -1,13E+01 |
| WDP       III       7,04E+02       0,00E+00       1,16E+01       1,04E+00       3,35E+01       -1,15E+01         GWP-fossil = Global Warming Potential fossil fuels; GWP-biogenic = Global Warming Potential biogenic;       GWP-luluc = Global Warming Potential land use and land use change; ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential, Accumulated Exceedance; EP-freshwater = Eutrophication potential, fraction of nutrients reaching freshwater end compartment; EP-terrestrial = Eutrophication potential, Accumulated Exceedance; POCP = Formation potential of tropospheric ozone; ADP-minerals&metals = Abiotic depletion potential for non-fossil resources; ADP-fossil = Abiotic depletion for fossil resources potential; WDP = Water (user) deprivation potential, deprivation-weighted water consumption |                        |                 |             |             |              |             |           |

## Mandatory impact category indicators according to EN 15804

\*\* Disclaimer: The results of this environmental impact indicator shall be used with care as the uncertainties of these results are high or as there is limited experience with the indicator.

### Additional mandatory and voluntary impact category indicators

| R                    | Results per 1 metric tonne of hot-dipped pre-galvanized cable ladders (Z4) |          |          |          |          |          |           |
|----------------------|----------------------------------------------------------------------------|----------|----------|----------|----------|----------|-----------|
| Indicator            | Unit                                                                       | A1-A3    | C1       | C2       | C3       | C4       | D         |
| GWP-GHG <sup>1</sup> | kg CO <sub>2</sub> eq.                                                     | 2,68E+03 | 0,00E+00 | 9,55E+00 | 5,41E+01 | 2,59E-01 | -1,03E+03 |

<sup>&</sup>lt;sup>1</sup> This indicator accounts for all greenhouse gases except biogenic carbon dioxide uptake and emissions and biogenic carbon stored in the product. As such, the indicator is identical to GWP-total except that the CF for biogenic  $CO_2$  is set to zero.





| F         | Results per 1 metric tonne of hot-dipped pre-galvanized cable ladders (Z4) |          |          |          |                 |          |           |
|-----------|----------------------------------------------------------------------------|----------|----------|----------|-----------------|----------|-----------|
| Indicator | Unit                                                                       | A1-A3    | C1       | C2       | C3              | C4       | D         |
| PERE      | MJ                                                                         | 2,12E+03 | 0,00E+00 | 9,53E+00 | 4,23E+00        | 6,40E-02 | -3,99E+03 |
| PERM      | MJ                                                                         | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00        | 0,00E+00 | 0,00E+00  |
| PERT      | MJ                                                                         | 2,12E+03 | 0,00E+00 | 9,53E+00 | 4,23E+00        | 6,40E-02 | -3,99E+03 |
| PENRE     | MJ                                                                         | 2,96E+04 | 0,00E+00 | 1,31E+02 | 7,47E+02        | 7,38E+00 | -1,06E+04 |
| PENRM     | MJ                                                                         | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00        | 0,00E+00 | 0,00E+00  |
| PENRT     | MJ                                                                         | 2,96E+04 | 0,00E+00 | 1,31E+02 | 7,47E+02        | 7,38E+00 | -1,06E+04 |
| SM        | kg                                                                         | 1,04E+02 | 0,00E+00 | 0,00E+00 | 0,00E+00        | 0,00E+00 | 0,00E+00  |
| RSF       | MJ                                                                         | 3,20E+02 | 0,00E+00 | 0,00E+00 | 0,00E+00        | 0,00E+00 | 0,00E+00  |
| NRSF      | MJ                                                                         | 8,29E+01 | 0,00E+00 | 0,00E+00 | 0,00E+00        | 0,00E+00 | 0,00E+00  |
| FW        | m <sup>3</sup>                                                             | 1,90E+01 | 0,00E+00 | 1,04E-02 | 4,28E-02        | 7,88E-03 | -2,59E+00 |
|           |                                                                            | •        | , .,     |          | vable primary e |          |           |

## **Resource use indicators**

Acronyms

PERE = Use of renewable primary energy excluding renewable primary energy resources used as raw materials; PERM = Use of renewable primary energy resources; PENRE = Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials; PENRM = Use of non-renewable primary energy resources used as raw materials; PENRM = Use of non-renewable primary energy resources; SM = Use of secondary material; RSF = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Use of non-renewable secondary fuels; FW = Use of net fresh water

# Waste indicators

| R                                      | Results per 1 metric tonne of hot-dipped pre-galvanized cable ladders (Z4) |          |          |          |          |          |           |
|----------------------------------------|----------------------------------------------------------------------------|----------|----------|----------|----------|----------|-----------|
| Indicator                              | Unit                                                                       | A1-A3    | C1       | C2       | C3       | C4       | D         |
| Hazardous<br>waste<br>disposed         | kg                                                                         | 1,10E-02 | 0,00E+00 | 4,07E-10 | 0,00E+00 | 0,00E+00 | 7,89E-07  |
| Non-<br>hazardous<br>waste<br>disposed | kg                                                                         | 1,17E+02 | 0,00E+00 | 2,00E-02 | 0,00E+00 | 5,00E+01 | -8,30E+00 |
| Radioactive<br>waste<br>disposed       | kg                                                                         | 4,98E-01 | 0,00E+00 | 2,46E-04 | 0,00E+00 | 0,00E+00 | -4,15E-01 |

# **Output flow indicators**

| Results per | 1 metric tonne of | f hot-dipped | pre-galvanized | cable ladders (Z4 | ) |
|-------------|-------------------|--------------|----------------|-------------------|---|
|             |                   |              |                |                   |   |

| Indicator                           | Unit | A1-A3    | C1       | C2       | C3       | C4       | D        |
|-------------------------------------|------|----------|----------|----------|----------|----------|----------|
| Components for re-use               | kg   | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 |
| Material for<br>recycling           | kg   | 4,27E-01 | 0,00E+00 | 0,00E+00 | 9,50E+02 | 0,00E+00 | 0,00E+00 |
| Materials for<br>energy<br>recovery | kg   | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 |
| Exported<br>energy,<br>electricity  | MJ   | 4,06E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 |
| Exported<br>energy,<br>thermal      | MJ   | 7,29E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 |





# Additional electricity information

| Type of information             | Description                                                                                                          |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------|
| Location                        | Residual mix (nuclear power, power from hard coal, power from HFO, power from natural gas) + power from photovoltaic |
| Geographical representativeness | Sweden                                                                                                               |
| Reference year                  | 2019                                                                                                                 |
| Source                          | Professional database 2023                                                                                           |
| GWP-GHG (kg CO2e/kWh)           | 0,09                                                                                                                 |





# References

- EN 15804+A2/AC:2021 Sustainability of construction works Environmental product declarations Core rules for the product category of construction products.
- General Programme Instructions of the International EPD<sup>®</sup> System. Version 4.0.
- ISO 14025:2010 Environmental labels and declarations Type III environmental declarations – Principles and procedures.
- ISO 14040:2006 Environmental management Life cycle assessment Principles and framework.
- ISO 14044:2006 Environmental management Life cycle assessment Requirements and guideline on Life Cycle Assessments (LCA).
- PCR 2019:14 Construction products and construction services, version 1.3.31.2.5.
- Silfverstrand, N., Eknor Morrell, T., Dziubanii, K., Jelse, K. Underlying LCA for Environmental Product Declaration EPD<sup>®</sup> MP bolagen Industri AB. Ramboll, 2023.

