List of Contents

Selection of surface finis	sh pages 4-6	
Equipotential bonding	page 8	
Cable ladders	pages 9-62	
Cable trays/luminaire ra	ils pages 63-92	
Wire mesh trays	pages 93-116	
Profiles	pages 117-125	e contra
MP-19" racks	pages 127-138	R
Potential connection	pages 139-144	المشكاي
Cable clamps	pages 145-150	Ę
Ceiling brackets/ concrete screws	pages 151-155	
Service poles/posts	pages 157-171	
Floor boxes	pages 173-180	
Wall trunkings	pages 181-200	
E-number, weight package	pages 201-214,	

What surface finish should I choose?

A simple rule says that you can use the surface finishes as follows:

Surface finish		Maximum corrosivity class
Electrogalvanization		C1
Painted sheet metal		C2
Pre-galvanised sheet metal Z	275 (Sendzimir process)	C2
Hot-dip galvanizing	SS-EN ISO 1461	C4
Z4		C4
Stainless steel, acid resistant		C5I/C5M

Each corrosivity class has a fairly wide range and lifespan needs may vary. Proceed as set out below to more exactly determine which surface finish your project requires:

- 1. Use table 1:23a to determine the corrosivity class that the project best corresponds with.
- 2. Choose the surface finish according to the lifespan requirement in the selected corrosivity class, see table 2.

Example: You need to install cable ladders in an unheated warehouse building.

- 1. Table 1:23a shows clearly that here we have a C2 environment.
- 2. The warehouse building will be in service for more than 25 years, we choose pre-galva nised sheet metal Z275.
- 3. Here the MP code will be S, cable ladders are available with S in the MP-no, we choose it. All parts for installation thus must have an MP-code S or a letter further down in the list below.

In the MP-number the letter represents the following:

Layer thickness

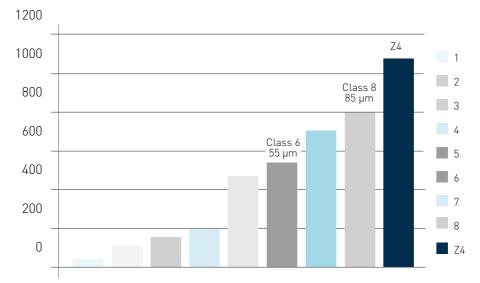
E = Electrogalvanization		10 µm
V = White finish	RAL 9010	60-70 µm
B = Beige paint	NCS 2502-Y	60-70 µm
S = Pre-galvanized sheet metal	Z275 (Sendzimir process)	20 µm
A = Aluzinc	AZ150	20 µm
Z = Hot-dip galvanizing	SS-EN ISO 1461	60 µm
Z4 = Zinc/magnesium/aluminum	Cl. 8/SS-EN ISO 61537 (equiva	al.) 85 µm
R = Stainless steel/acid resistant		

Table 1:23a

Corrosivity class according to SS-EN ISO 12944-2, taking into account the corrosivity of the atmosphere and environment examples.

Corro- sivity	Environ- ment's	Examples of typical environments in the temperate climate zone (informative).		
class	corrosivity	Outdoor	Indoor	
	Very low		Heated areas with dry and insignificant amounts of contamination, for example, offices, shops, schools and hotels.	
	Low	Atmospheres with low content of air con- tamination. Rural areas.	Non-heated areas with varying teperatures and humidity. Low frequency air of conden- sation and low levels of air contamination, for example, sports halls and warehouses.	
1 1 1 1 1 1 1 1	Moderate	Atmosphere with small quantities of salt or moderate amounts of air contamination. Urban areas and light industrial areas. Areas with some influence from the coast.	Areas with moderate humidity and some air contamination from production pro- cesses, for example, breweries, dairies and laundries. Areas with high humidity and large quan-	
1 C 3/C4	High	Atmosphere with a moderate quantity of salt or tangible quantities of air contamina- tion, in industrial and coastal areas.	tities of air contamination from production processes, for example, chemical plants, swimming pools and shipyards.	
C5-1	Very high (industrial)	Industrial areas with high humidity and aggressive atmosphere.	Areas with almost permanent moisture condensation and large levels of air con- tamination.	
	Very high (marine)	Coastal and offshore areas with large amounts of salt.	Areas with almost permanent moisture condensation and large levels of air con- tamination.	

Table 2 –	is a calculation of the surface treatment's service life until red rust occurs on
	the surface.


Corro-	Corrosivity per unit area and unilateral thickness reduction – one-year exposure.			
sivity class	Steel		Zinc	
	Corrosivity (g/m²)	Thickness reduction µm	Corrosivity (g/m²)	Thickness reduction
C1	≤ 10	≤ 1,3	≤ 0,7	≤ 0,1
C2	>10 - 200	> 1,3 – 25	> 0,7 – 5	> 0,1 - 0,7
C3	> 200 - 400	> 25 – 50	> 5 – 15	> 0,7 - 2,1
C4	> 400 - 650	> 50 - 80	> 15 – 30	> 2,1 - 4,2
C5-I	> 10 - 1 500	> 80 - 200	> 30 - 60	> 4,2 - 8,4
C5-M	>10 - 1 500	> 80 - 200	> 30 - 60	> 4,2 - 8,4

Less zinc usage saves natural resources in forests and the ground. It also has a lower price than hot-dip galvanized!

Z4 is a new more environmentally friendly material and meets the requirements for surface treatment class 8 according to SS-EN ISO 61537 – corresponds to min. 85 μ m hot dip galvanizing (approved for C4-environments).

After 1050 hours of salt spray testing, only white rust occurred, which does not affect the function or lifespan.

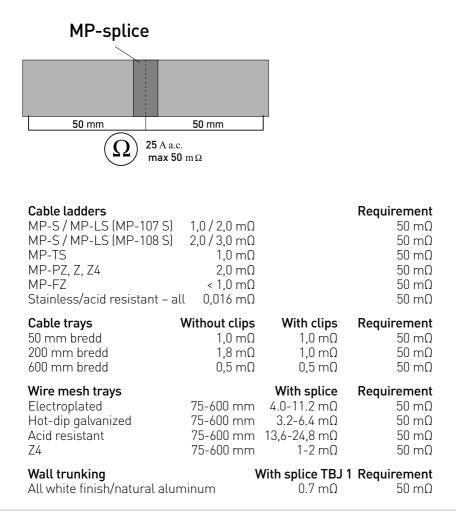
For further information - see mpbolagen.se

Hours of exposure salt spray test!

Hot dip galvanized - 1050 h

Z4 – 1050 h

MP-cable ladders QUICKER AND EASIER



Electrical continuity

All products in MP-cable installations comply to applicable demands regarding electrical continuity over splices according to SS-EN 61537:2007.

Painted trays have paint-free ends as standard and thus satisfy the requirements set out in the table below. For cutting and joining painted trays you must manually create an electrical connection across the splice. Ideally by means of a screwed metal joint on a paint-free surface (paint removed).

SP Technical Research Institute of Sweden in Borås have made test measurements 500 mm on each side of the splice with the following result.

